

ПРОТОКОЛ ИСПЫТАНИЙ №4

от 12.05.2021

1. Объекты испытаний

Уличные коммутаторы моделей:

OS-44TB1(SW-60812/I)

OSP-46TB1(SW-60812/I)

OS-46TB1(SW-60812/I)

OSP-46VB1(SW-60812/I) с теплоизоляцией и проточной вентиляцией

OS-46HB1(SW-60812/I) с теплоизоляцией

SW-80402/WLU

2. Цель испытаний

Подтвердить возможность использования уличного оборудования OSNOVO в условиях критически низкой температуры окружающей среды до -60°C.

3. Программа испытаний

Рис.1 Схема испытательного стенда

- **3.1** После достижения в термокамере заданной температуры охлаждения -60°С, выдержать испытываемое оборудование в течение 4 часов. Регистрировать контрольные параметры с помощью Программного обеспечения OSNOVO Monitoring System.
- **3.2** (!) Для модели OS-46TB1 систему термостабилизации отключить до момента достижения температуры внутри корпуса (нижний датчик) -30°C. Затем возобновить ее работу для получения информации о возможностях системы термостабилизации при ее включении в условиях критически низких температур внутри устройства.

4. Условия проведения испытаний

Термокамера: НПФ Технология модель КТХВ-500.

Система мониторинга в составе:

- 1. Программное обеспечение OSNOVO Monitoring System
- 2. Контроллеры OSNOVO TMS-01 (6шт)
- 3. Датчики температуры и влажности OSNOVO TMS-STH (10шт)

Рис.2 Испытательная камера KTXB-500, ноутбук с программным обеспечением OSNOVO Monitoring System

5. Результаты испытаний

Табл. 1 Результаты испытания уличных коммутаторов

Температура в испытательной камере (°C)			26	-9	-21	-31	-40	-44	-51	-55	-57	-58	-58,6	-59	-59,5	-59,8	-60	-60	-60	-60	-60
Время измерения час:мин		0:00	0:30	0:40	0:50	1:00	1:10	1:30	1:45	2:05	2:35	2:45	2:55	3:00	3:15	3:35	3:45	6:25	7:00	7:45	
	Параметр	Зона																			
	измерения	измерения																			
OS-44TB1(SW-60812/I)	Температура	Верхняя																			
	(°C)	Нижняя	29	19	4	11	8	6	0	-2	-6	-7	-8	-9	-9	-10	-10	-11	-12	-12	-12
	Влажность	Верхняя																			
	(%)	Нижняя	23	29	32	14	9	9	7	6	6	6	6	6	6	6	6	6	6	6	5
OSP-46TB1(SW-60812/I)	Температура	Верхняя	31	15	6	21	15	12	5	1	-1	-2	-3	-4	-5	-5	-6	-6	-7	-7	-8
	(°C)	Нижняя	26	12	3	14	7	4	-2	-6	-9	-10	-11	-12	-12	-13	-13	-13	-15	-15	-15
	Влажность	Верхняя	25	29	25	8	6	5	5	5	4	4	3	4	3	3	3	3	3	3	3
	(%)	Нижняя	27	34	28	13	9	8	7	7	6	6	6	6	6	6	6	6	6	6	6
OS-46TB1(SW-60812/I)	Температура	Верхняя	30	15	6	34	32	31	26	23	21	20	19	19	18	18	17	17	16	16	16
	(°C)	Нижняя	26	10	0	9	6	4	0	-4	-7	-8	-9	-9	-10	-10	-11	-11	-12	-12	-12
	Влажность	Верхняя	21	24	24	6	3	3	2	2	2	2	2	2	2	2	2	2	2	2	2
	(%)	Нижняя	27	31	35	29	17	15	12	10	10	9	9	9	9	9	9	9	9	8	8
OSP-46VB1(SW-60812/I)	Температура	Верхняя	29	29	23	17	16	28	30	28	26	28	28	23	27	29	18	22	29	28	29
	(°C)	Нижняя	23	21	14	1	-1	9	10	8	7	8	8	2	2	9	-5	1	9	7	8
	Влажность	Верхняя	22	17	12	8	4	2	1	1	1	0	0	1	0	0	1	0	0	0	0
	(%)	Нижняя	27	25	20	18	12	7	4	4	3	3	3	4	3	3	4	3	2	2	2
OS-46HB1(SW-60812/I)	Температура	Верхняя	36	28	22	16	24	10	35	38	24	32	24	38	27	26	12	30	39	19	38
	(°C)	Нижняя	29	20	13	2	6	-5	9	11	0	5	-1	10	0	-1	-11	2	10	-6	8
	Влажность	Верхняя	21	22	17	11	3	5	1	0	1	0	0	0	0	0	1	0	0	0	0
	(%)	Нижняя	31	33	26	22	10	14	6	5	5	4	6	4	5	5	6	4	3	6	3
SW-80402/WLU	Температура	Верхняя																			
	(°C)	Нижняя	29	28	21	23	20	19	14	10	7	6	5	4	3	2	2	2	0	0	0
	Влажность	Верхняя																			
	(%)	Нижняя	23	20	16	10	7	6	5	5	4	4	4	4	4	4	4	4	4	4	4

5.1 Уличный коммутатор OS-44TB1(SW-60812/I)

Корпус: листовая сталь толщиной 1 мм с полимерно-порошковым покрытием.

Размеры (ШхВхГ): 400х400х210мм.

Нагреватель: 200 Вт (со встроенным вентилятором).

Без термоизоляционного утеплителя.

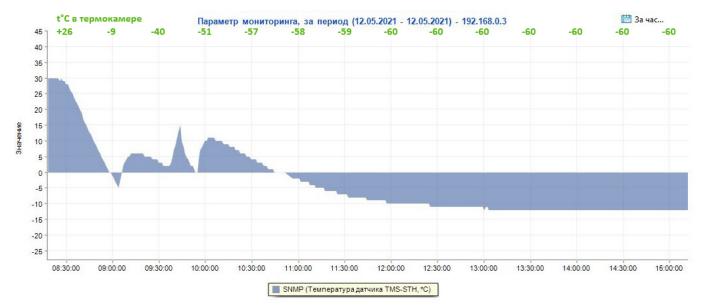


Рис. 5.1.1 График изменения температуры в OS-44TB1(SW-60812/I), нижнее положение датчика в корпусе (нижняя DINрейка), в верхнем положении датчик не устанавливался

5.2 Уличный коммутатор OSP-46TB1(SW-60812/I)

Корпус: стеклоармированный полиэстер толщиной 4 мм.

Размеры (ШхВхГ): 400х600х230мм.

Нагреватель: 200 Вт (со встроенным вентилятором).*

*Использовался в качестве эксперимента. В серийном производстве применяется нагреватель мощностью 300 Вт (со встроенным вентилятором), обеспечивающий более высокую температуру внутри корпуса.

Без термоизоляционного утеплителя.

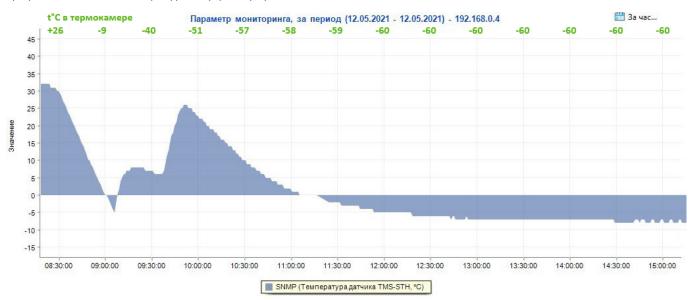


Рис. 5.2.1 График изменения температуры в OSP-46TB1(SW-60812/I), верхнее положение датчика в корпусе (верхняя DIN рейка)

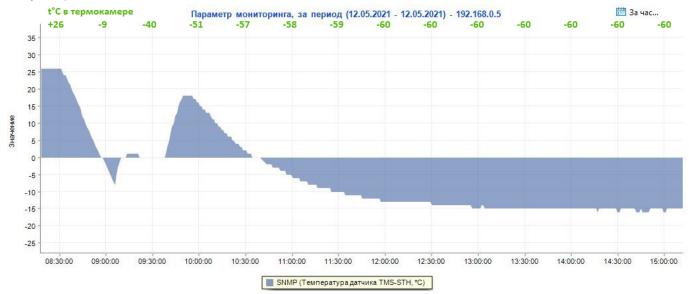


Рис. 5.2.2 График изменения температуры в OSP-46TB1(SW-60812/I), нижнее положение датчика в корпусе (нижняя DIN-рейка)

5.3 Уличный коммутатор OS-46TB1(SW-60812/I)

Корпус: листовая сталь толщиной 1,5 мм с полимерно-порошковым покрытием.

Размеры (ШхВхГ): 400х600х210мм.

Нагреватель: 300 Вт (со встроенным вентилятором).

Без термоизоляционного утеплителя.

(!) Система термостабилизации была отключена до момента достижения температуры внутри корпуса (нижнее положение датчика) -30°С, после чего была включена.

Рис. 5.3.1 График изменения температуры в OS-46TB1(SW-60812/I), верхнее положение датчика в корпусе (верхняя DIN рейка)

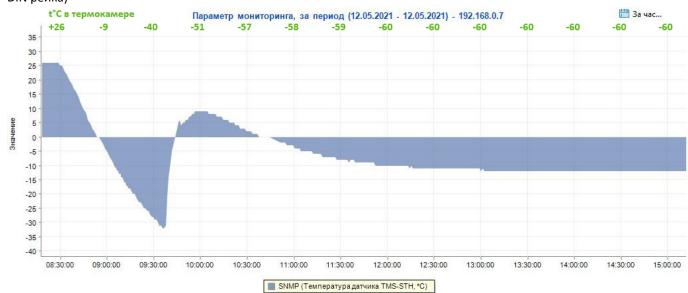


Рис. 5.3.2 График изменения температуры в OS-46TB1(SW-60812/I), нижнее положение датчика в корпусе (нижняя DINрейка)

5.4 Уличный коммутатор OSP-46VB1(SW-60812/I)

*Фото OSP-46VB1 без установленного коммутатора.

Корпус: стеклоармированный полиэстер толщиной 4 мм.

Размеры (ШхВхГ): 400х600х230мм.

Нагреватель: 200 Вт (со встроенным вентилятором).

С термоизоляционным утеплителем.

(!) В ходе испытаний вентиляционные отверстия были закрыты термоизоляционными заглушками из комплекта поставки уличной станции OSP-46VB1.

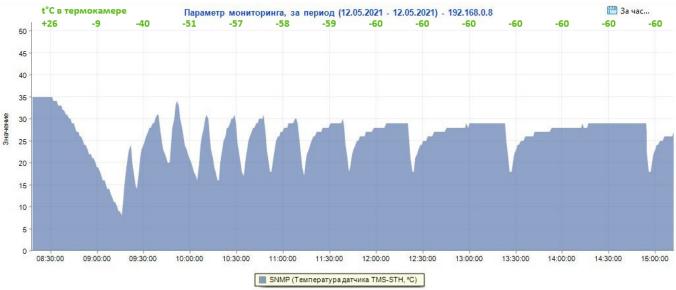


Рис. 5.4.1 График изменения температуры в OSP-46VB1(SW-60812/I), верхнее положение датчика в корпусе (верхняя DIN рейка)

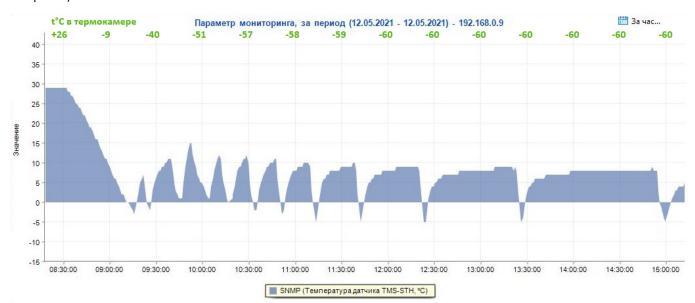


Рис. 5.4.2 График изменения температуры в OS-46VB1(SW-60812/I), нижнее положение датчика в корпусе (нижняя DIN-рейка)

5.5 Уличный коммутатор OS-46HB1(SW-60812/I)

Корпус: листовая сталь толщиной 1,5 мм с полимерно-порошковым покрытием.

Размеры (ШхВхГ): 400х600х210мм.

Нагреватель: 200 Вт (со встроенным вентилятором).

С термоизоляционным утеплителем.



Рис. 5.5.1 График изменения температуры в OS-46HB1(SW-60812/I), верхнее положение датчика в корпусе (верхняя DIN рейка)



Рис. 5.5.2 График изменения температуры в OS-46HB1(SW-60812/I), нижнее положение датчика в корпусе (нижняя DIN-рейка)

5.6 Уличный коммутатор SW-80402/WLU

Корпус: стеклоармированный поликарбонат толщиной 5 мм (крышка 3 мм).

Размеры (ШхВхГ): 300х400х187мм. Нагреватель: 75 Вт (конвекционный). Без термоизоляционного утеплителя.

Рис. 5.6.1 График изменения температуры в SW-80402/WLU (датчик размещён на оптической розетке)

6. Результаты испытаний

- **6.1** Относительная влажность, измеренная в УК, со временем стремилась к нулевому значению и в конце испытания значения составили от 0% до 8%.
- 6.2 Во всех УК оборудованных двумя датчиками измерения параметров, хорошо заметна значительная разница между показаниями в верхней и нижней зонах. Это обусловлено конвекционным движением воздуха внутри корпуса УК. Этот процесс присутствует даже в случае, когда испытуемые устройства находятся при комнатной температуре, то есть до включения термонагревателей. После включения термонагревателей и понижении температуры в камере климатических испытаний, этот эффект только возрастает. Разница между температурами верхней и нижней зон в корпусах не является критичной, так как мы измеряем температуру воздуха, который постоянно перемешивается внутри корпусов, образуя некую среднюю температуру.
- 6.3 Параметры систем термостабилизации УК, оклеенных термоизоляционным материалом, заметно выше, чем параметры устройств без такой оклейки. В уличных коммутаторах OSP-46VB1(SW-60812/I) и OS-46HB1(SW-60812/I) абсолютные значения температуры в верхней зоне корпуса значительно выше нуля, а средние значения находятся не ниже нулевого значения. Это позволяет рекомендовать оклейку термоизоляционным материалом УС, эксплуатация которых, будет происходить в условиях особенно низких температур или сильных зимних ветров (значительно увеличивающих теплообмен корпуса).
- **6.4** После включения системы термостабилизации OS-46TB1(SW-60812/I) температура поднялась внутри корпуса с -30°C до 0°C (нижний датчик) за время менее 10 мин. Далее при продолжении охлаждения в испытательной камере, система термостабилизации уверено обеспечивала необходимые температуры внутри корпуса (выше -10°C).
- **6.5** Уменьшение значения абсолютной влажности внутри УК и стремление его к нулевому показателю объясняется процессом движения нагретого термонагревателем воздуха. Двигаясь внутри корпуса, он обдувает датчики и удаляет с его поверхности молекулы воды и водяного пара.
- 6.6 Уплотнители показали свою надежность и эффективность. Была обеспечена полная герметичность корпусов.
- 6.7 Замки обеспечили надежность запирания корпусов во всех диапазонах испытательных температур.
- 6.8 Гермовводы из комплекта поставки уличных станций обеспечили надежную герметичность корпусов.
- **6.9** Полимерно-порошковое покрытие УК в металлических корпусах показали хорошую стойкость к низким температурам. Растрескивание, отслоение или вздутие полностью отсутствует.

7. Заключение

Уличные коммутаторы и станции OSNOVO с термостабилизацией соответствуют требованиям Технических Условий (263011-002-27363430-2020) и (407100-001-27363430-2018).

Уличные коммутаторы и станции OSNOVO с термостабилизацией могут эксплуатироваться в широком диапазоне температур окружающей среды от -60°C до +50°C.

Штамп

Aller S

Инженер

Руководитель отдела технического контроля